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Ring-opening reactions of benzotriazoles with Wittig reagents
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Abstract—Nonafluorobutanesulfonyl-1H-benzotriazole affords phenylazomethylenetriphenylphosphoranes upon treatment with
in situ generated alkyl triphenylphosphoranylidenes. Methylenetriphenylphosphorylidene yields the corresponding bis-phenylazo-
methylene-triphenylphosphorane.
� 2006 Elsevier Ltd. All rights reserved.
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Azomethylene-triphenylphosphoranes are stabilized
phosphorus ylides suitable for the synthesis of various
heterocyclic compounds. For example, indazolines,1

cinnolines and oxycinnolines,1,2 benzodiazepines,3,4 pyr-
azoles,3,5 thia-diazoles,6 quinazolines,7 and tetrazolium
salts8,9 have been prepared from azomethylene-triphe-
nylphosphoranes. Such phosphoranes can be prepared
either via nitrilimines starting from aryl hydrazonoyl
halides10–13 or by 1,3-dipolar cycloaddition of nitrilox-
ides, azides, and diazoalkanes to N-phenyliminoketeny-
lidene-triphenylphosphorane14 or by addition of
aromatic diazonium salts to Wittig reagents.8,15–18 The
latter synthesis of azomethylene-triphenylphosphoranes
is the most flexible one so far but suffers from the
requirement to apply isolated diazonium salts.

Recently, we found that nonafluorobutanesulfonyl-1H-
benzotriazole 1a undergoes a clean ring-opening reac-
tion of the triazole moiety upon treatment with carbon
nucleophiles. When treated with phenols and naphthols
triazole 1a affords the corresponding azo-arenes.19 With
a broad variety of CH-acidic compounds, 1a undergoes
a Japp–Klingemann reaction yielding the corresponding
azo-compounds or hydrazones, respectively, depending
on the structure of the applied nucleophile.20 In this
sense, nonafluorobutanesulfonyl-1H-benzotriazole 1a
reacts like the corresponding diazonium salt 1b.
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Although the precise mechanism of this unusual ring-
opening reaction could not be proven unambiguously
yet, we speculated that 1a should react with other nucleo-
philes via its corresponding diazonium intermediate 1b
as well (Scheme 1).

In order to exploit the arenediazonium character of 1a
further, we anticipated its reaction with Wittig reagents
via intermediate 1b to yield the corresponding aryl or
alkylazomethylene-triphenylphosphoranes.

Indeed, when benzyltriphenylphosphonium chloride
(2a) was converted in situ into the corresponding phos-
phorane and subsequently treated with nonafluoro-
butanesulfonyl-1H-benzotriazole 1a in THF, tlc
indicated a smooth reaction at room temperature, which
was completed within 30 min. The initial product 3a
formed from the addition of the Wittig reagent to 1a
NH

Nf

Scheme 1. Reaction of 1a with nucleophiles via diazonium salt 1b.
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Scheme 2. Reagents and conditions: (i) (a) 1 equiv 2a, 1.5 equiv NaH
60% in mineral oil, THF, 25 �C, 4 h; (b) 1.1 equiv 1a, 25 �C, 0.5 h and
(c) HClg, EtOAc, 90% 4a.

N
N

N

Nf1a

CH3

PPh3 Cl

PPh3

N
N

HN

Nf2g

5

i

1a

PPh3

N
N

HN

Nf

N
N

NH

Nf

Scheme 3. Reagents and conditions: (i) (a) 1 equiv 2g, 1.5 equiv BuLi
in n-hexane, THF, 25 �C, 4 h and (b) 2.2 equiv 1a, 25 �C, 0.5 h, 44% 4.
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was not isolated in this case but treated with HCl and
characterized as its triphenylphosphonium chloride 4a
(Scheme 2). It is well known for similar arylazomethyl-
ene-triphenylphosphoranes that protonation occurs at
the nitrogen of the azo group affording the correspond-
ing hydrazones.1,10,15

Similarly, several other in situ generated Wittig reagents
were reacted with 1a giving the corresponding arylazo-
methylenetriphenylphosphoranes 3 or their hydro-
chlorides 4 in medium to good yields (Table 1). The
reactions were carried out in THF and the products
Table 1. Reaction of 1 with various triphenylphosphoranes 2
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were either purified by chromatography or by precipita-
tion as hydrochlorides followed by crystallization.21

Reactive methyltriphenylphosphonium bromide 2g
added two molecules of 1a affording bis-arylazomethyl-
ene-triphenylphosphorane 5 in an 44% overall yield
(Scheme 3). However, when attempts were made to add
ethyl- and isopropyltriphenylphosphonium bromide to
1a, only an extensive decomposition took place. Obvi-
ously, the presence of b-CH groups leads to side reactions
and thus, limits this novel preparation of azomethylene-
triphenylphosphoranes from benzotriazoles.
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(d, J10-P ¼ 21:7 Hz, C-1 0), 130.1 (d, J200-P=600-P ¼ 12:9 Hz, C-
200, C-600), 130.7 (C-3 0, C-5 0), 130.9 (d, J 20-P=60-P ¼ 3:7 Hz,
C-2 0, C-6 0), 133.9 (C-1), 134.3 (d, J 300-P=500-P ¼ 10:2 Hz, C-
300, C-500), 135.1 (d, J400-P ¼ 2:8 Hz, C-400), 135.8 (C-4 0),
137.3 (d, J 20-P ¼ 1:9 Hz, C-2 0). FAB-MS: m/z = 788.0
[M+H]+. Compound 3e: mp 208–209 �C (dec.; EtOAc).
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3H, H–CH3), 6.61–6.68 (m, 1H, H-5), 6.77–6.94 (m, 6H,
H-4, H-6, H-2 0, H-3 0, H-5 0, H-6 0), 7.45–7.64 (m, 13H, H-3,
H-200, H-300, H-500, H-600), 7.74–7.82 (m, 3H, H-400), 12.45
(s, 1H, NH). 13C NMR (62.9 MHz, CDCl3): d = 55.3
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(CH3), 112.4 (C-6), 115.9 (C-3 0, C-5 0), 119.2 (d,
J10-P ¼ 21:7 Hz, C-1 0), 119.5 (d, J100-P ¼ 89:6 Hz, C-100),
119.9 (d, JCP–P = 134 Hz, C–CP), 123.8 (C-3), 123.9 (C-4),
130.0 (d, J 200-P=600-P ¼ 12:5 Hz, C-200, C-600), 131.1 (d,
J = 3.7 Hz, C-2 0, C-6 0), 134.3 (d, J 300-P=500-P ¼ 9:7 Hz, C-
300, C-500), 134.3 (C-1), 134.9 (d, J400-P ¼ 2:8 Hz, C-400),
135.3 (C-2), 161.4 (C-4 0). FAB-MS: m/z = 784.0 [M+H]+.
Compound 3f: mp 194–197 �C (dec.; EtOAc). IR (KBr):
3442 (NH), 1349, 1191 (SO2), 1688 (CO), 1440 (CP), 1264,
1130, 1029 cm�1 (CF). UV/vis (CH3CN): 410 nm (13,400).
1H NMR (250 MHz, CDCl3): d = 1.09 (t, 3H, J100-200 ¼
7:1 Hz, CH3), 4.29 (q, 2H, J200-100 ¼ 7:1 Hz, CH2) 6.55–6.58
(m, 2H, H-3, H-4), 6.92–6.99 (m, 1H, H-5), 6.55–6.58 (m,
2H, H-3, H-4), 7.58–7.70 (m, 13H, H-6, H-2 0, H-3 0, H-5 0,
H-6 0), 7.76–7.84 (m, 3H, H-4 0), 13.89 (s, 1H, NH). 13C
NMR (62.9 MHz, CDCl3): d = 13.9 (C200-CH3), 62.9 (C100-
CH2), 104.5 (d, JCP–P = 145 Hz, C–CP), 113.4 (C-3), 119.7
(d, J10-P ¼ 93:26, C-10), 120.0 (C-4), 122.7 (C-6), 127.5
(C-5), 129.8 (d, J20-P=60-P ¼ 12:9 Hz, C-2 0, C-6 0), 133.0 (C-
2), 134.1 (d, J30-P=50-P ¼ 10:2 Hz, C-30, C-5 0), 134.6 (d,
J40-P ¼ 2:8 Hz, C-4 0), 138.7 (C-1), 161.6 (d, JCO–P =
27.2 Hz, C–CO). FAB-MS: m/z = 749.9 [M+H]+.
Compound 5: mp 190–193 �C (petroleum ether/EtOAc).
IR (KBr): 3442 (NH, OH), 1350, 1191 (SO2), 1440 (CP),
1134, 1035 cm�1 (CF). UV/vis (CH3CN): 534 nm
(12,800).1H NMR (250 MHz, CDCl3): d = 6.89–6.95 (m,
2H, H-4, H-4 0), 7.02–7.06 (m, 2H, H-3, H-3 0), 7.09–7.16
(m, 2H, H-5, H-5 0), 7.45–7.48 (m, 2H, H-6, H-6 0), 7.59–
7.67 (m, 12H, H-200, H-300, H-500, H-600), 7.71–7.81 (m, 3H,
H-400), 16.5 (s, 2H, NH). 13C NMR (62.9 MHz, CDCl3):
d = 115.8 (C-3, C-3 0), 119.1 (d, J100-P ¼ 92:3 Hz, C-100),
125.1 (C-4, C-4 0), 126.6 (C-6, C-6 0), 128.0 (d, JCP–P =
174 Hz, C–CP), 130.0 (d, J 200-P=600-P ¼ 12:9 Hz, C-200, C-600),
130.5 (C-5, C-5 0), 134.2 (d, J300-P=50-P ¼ 10:2 Hz, C-300,
C-500), 134.9 (C-2, C-2 0), 135.1 (d, J400-P ¼ 3:2 Hz, C-400),
140.8 (C-1, C-1 0). FAB-MS: m/z = 1078.9 [M+H]+.
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